162 research outputs found

    Hypercoagulability progresses to hypocoagulability during evolution of acetaminophen-induced acute liver injury in pigs

    Get PDF
    Increases in prothrombin time (PT) and international normalised ratio (INR) characterise acute liver injury (ALI) and failure (ALF), yet a wide heterogeneity in clotting abnormalities exists. This study defines evolution of coagulopathy in 10 pigs with acetaminophen (APAP)-induced ALI compared to 3 Controls. APAP administration began at 0 h and continued to ‘ALF’, defined as INR >3. In APAP pigs, INR was 1.05 ± 0.02 at 0 h, 2.15 ± 0.43 at 16 h and > 3 at 18 ± 1 h. At 12 h thromboelastography (TEG) demonstrated increased clot formation rate, associated with portal vein platelet aggregates and reductions in protein C, protein S, antithrombin and A Disintegrin and Metalloprotease with Thrombospondin type 1 repeats–13 (ADAMTS-13) to 60%, 24%, 47% and 32% normal respectively. At 18 ± 1 h, INR > 3 was associated with: hypocoagulable TEG profile with heparin-like effect; falls in thrombin generation, Factor V and Factor VIII to 52%, 19% and 17% normal respectively; further decline in anticoagulants; thrombocytopenia; neutrophilia and endotoxemia. Multivariate analysis, found that ADAMTS-13 was an independent predictor of a hypercoagulable TEG profile and platelet count, endotoxin, Protein C and fibrinogen were independent predictors of a hypocoagulable TEG profile. INR remained normal in Controls. Dynamic changes in coagulation occur with progression of ALI: a pro-thrombotic state progresses to hypocoagulability

    Prevalence, Distribution and Functional Significance of the −237C to T Polymorphism in the IL-12Rβ2 Promoter in Indian Tuberculosis Patients

    Get PDF
    Cytokine/cytokine receptor gene polymorphisms related to structure/expression could impact immune response. Hence, the −237 polymorphic site in the 5′ promoter region of the IL-12Rβ2 (SNP ID: rs11810249) gene associated with the AP-4 transcription motif GAGCTG, was examined. Amplicons encompassing the polymorphism were generated from 46 pulmonary tuberculosis patients, 35 family contacts and 28 miscellaneous volunteers and sequenced. The C allele predominated among patients, (93.4%, 43/46), and in all volunteers and contacts screened, but the T allele was exclusively limited to patients, (6.5%, 3/46). The functional impact of this polymorphism on transcriptional activity was assessed by Luciferase-reporter and electrophoretic mobility shift assays (EMSA). Luciferase-reporter assays showed a significant reduction in transcriptional efficiency with T compared to C allele. The reduction in transcriptional efficiency with the T allele construct (pGIL-12Rb2-T), in U-87MG, THP-1 and Jurkat cell lines, were 53, 37.6, and 49.8% respectively, compared to the C allele construct (pGIL-12Rb2-C). Similarly, densitometric analysis of the EMSA assay showed reduced binding of the AP-4 transcription factor, to T compared to the C nucleotide probe. Reduced mRNA expression in all patients (3/3) harboring the T allele was seen, whereas individuals with the C allele exhibited high mRNA expression (17/25; 68%, p = 0.05). These observations were in agreement with the in vitro assessment of the promoter activity by Luciferase-reporter and EMSA assays. The reduced expression of IL-12Rβ2 transcripts in 8 patients despite having the C allele was attributed to the predominant over expression of the suppressors (IL-4 and GATA-3) and reduced expression of enhancers (IFN-α) of IL-12Rβ2 transcripts. The 17 high IL-12Rβ2 mRNA expressers had significantly elevated IFN-α mRNA levels compared to low expressers and volunteers. Notwithstanding the presence of high levels of IL-12Rβ2 mRNA in these patients elevated IFN-α expression could modulate their immune responses to Mycobacterium tuberculosis

    Biomarkers of Therapeutic Response in the IL-23 Pathway in Inflammatory Bowel Disease

    Get PDF
    OBJECTIVES: Interleukin-23 (IL-23) has emerged as a new therapeutic target for the treatment of inflammatory bowel disease (IBD). As biomarkers of disease state and treatment efficacy are becoming increasingly important in drug development, we sought to identify efficacy biomarkers for anti-IL-23 therapy in Crohn's disease (CD). METHODS: Candidate IL-23 biomarkers, downstream of IL-23 signaling, were identified using shotgun proteomic analysis of feces and colon lavages obtained from a short-term mouse IBD model (anti-CD40 Rag2(-/-)) treated preventively with monoclonal antibodies (mAbs) to the IL-23 receptor (IL-23R). The biomarkers were then measured in an IBD T-cell transfer model treated therapeutically with a mAb to IL-23 (p19), confirming their association with IBD. To assess the clinical relevance of these markers, we assessed their concentrations in clinical serum, colon tissue, and feces from CD patients. RESULTS: We identified 57 proteins up or downregulated in diseased animals that returned to control values when the mice were treated with mAbs to IL-23R. Among those, S100A8, S100A9, regenerating protein 3β (REG), REG3γ, lipocalin 2 (LCN2), deleted in malignant tumor 1 (DMBT1), and macrophage migration inhibitory factor (MIF) mRNA levels correlated with disease score and dose titration of mAbs to IL-23R or IL-23(p19). All biomarkers, except DMBT1, were also downregulated after therapeutic administration of mAbs to IL-23(p19) in a T-cell transfer IBD mouse model. In sera from CD patients, we confirmed a significant upregulation of S100A8/A9 (43%), MIF (138%), pancreatitis-associated protein (PAP, human homolog of REG3β/γ; 49%), LCN2 (520%), and CCL20 (1280%), compared with control samples, as well as a significant upregulation of S100A8/A9 (887%), PAP (401%), and LCN2 (783%) in human feces from CD patients compared with normal controls. CONCLUSIONS: These studies identify multiple protein biomarkers downstream of IL-23 that could be valuable tools to assess the efficacy of this new therapeutic agent.Clinical and Translational Gastroenterology (2012) 3, e10; doi:10.1038/ctg.2012.2; published online 16 February 2012

    Transfection of IL-10 expression vectors into endothelial cultures attenuates α4β7-dependent lymphocyte adhesion mediated by MAdCAM-1

    Get PDF
    BACKGROUND: Enhanced expression of MAdCAM-1 (mucosal addressin cell adhesion molecule-1) is associated with the onset and progression of inflammatory bowel disease. The clinical significance of elevated MAdCAM-1 expression is supported by studies showing that immunoneutralization of MAdCAM-1, or its ligands reduce inflammation and mucosal damage in models of colitis. Interleukin-10 (IL-10) is an endogenous anti-inflammatory and immunomodulatory cytokine that has been shown to prevent inflammation and injury in several animal studies, however clinical IL-10 treatment remains insufficient because of difficulties in the route of IL-10 administration and its biological half-life. Here, we examined the ability of introducing an IL-10 expression vector into endothelial cultures to reduce responses to a proinflammatory cytokine, TNF-α METHODS: A human IL-10 expression vector was transfected into high endothelial venular ('HEV') cells (SVEC4-10); we then examined TNF-α induced lymphocyte adhesion to lymphatic endothelial cells and TNF-α induced expression of MAdCAM-1 and compared these responses to control monolayers. RESULTS: Transfection of the IL-10 vector into endothelial cultures significantly reduced TNF-α induced, MAdCAM-1 dependent lymphocyte adhesion (compared to non-transfected cells). IL-10 transfected endothelial cells expressed less than half (46 ± 6.6%) of the MAdCAM-1 induced by TNF-α (set as 100%) in non-transfected (control) cells. CONCLUSION: Our results suggest that gene therapy of the gut microvasculature with IL-10 vectors may be useful in the clinical treatment of IBD

    Arachidonic Acid but not Eicosapentaenoic Acid (EPA) and Oleic Acid Activates NF-κB and Elevates ICAM-1 Expression in Caco-2 Cells

    Get PDF
    In patients with inflammatory bowel disease (IBD), intestinal activation of the transcription factor NF-κB as well as intercellular adhesion molecule (ICAM)-1 expression, which is involved in recruiting leukocytes to the side of inflammation is increased. Moreover, colonic arachidonic acid (ARA) proportions are increased and oleic acid (OA) proportions are decreased. Fish oils are protective in IBD patients however, a side-by-side comparison between effects of fish oils, ARA and OA has not been made. We therefore, compared effects of eicosapentaenoic acid (EPA) versus ARA and OA on ICAM-1 expression in Caco-2 enterocytes. To validate our model we showed that dexamethasone, sulfasalazine and PPARα (GW7647) or PPARγ (troglitazone) agonists significantly lowered ICAM-1 expression. ICAM-1 expression of non-stimulated and cytokine stimulated Caco-2 cells cultured for 22 days with ARA was significant higher as compared to EPA and OA. Furthermore, ARA increased NF-κB activation in a reporter cell-line as compared to EPA. Antibody array analysis of multiple inflammatory proteins particularly showed an increased monocyte chemotactic protein (MCP)-1 and angiogenin production and a decreased interleukin (IL)-6 and IL-10 production by ARA as compared to EPA. Our results showed that ARA but not EPA and OA activates NF-κB and elevates ICAM-1 expression in Caco-2 enterocytes. It suggests that replacement of ARA by EPA or OA in the colon mucosa might have beneficial effects for IBD patients. Finally, we suggest that the pro-inflammatory effects of ARA versus EPA and OA are not related to PPARγ activation and/or eicosanoid formation

    Computational Identification of Transcriptional Regulators in Human Endotoxemia

    Get PDF
    One of the great challenges in the post-genomic era is to decipher the underlying principles governing the dynamics of biological responses. As modulating gene expression levels is among the key regulatory responses of an organism to changes in its environment, identifying biologically relevant transcriptional regulators and their putative regulatory interactions with target genes is an essential step towards studying the complex dynamics of transcriptional regulation. We present an analysis that integrates various computational and biological aspects to explore the transcriptional regulation of systemic inflammatory responses through a human endotoxemia model. Given a high-dimensional transcriptional profiling dataset from human blood leukocytes, an elementary set of temporal dynamic responses which capture the essence of a pro-inflammatory phase, a counter-regulatory response and a dysregulation in leukocyte bioenergetics has been extracted. Upon identification of these expression patterns, fourteen inflammation-specific gene batteries that represent groups of hypothetically ‘coregulated’ genes are proposed. Subsequently, statistically significant cis-regulatory modules (CRMs) are identified and decomposed into a list of critical transcription factors (34) that are validated largely on primary literature. Finally, our analysis further allows for the construction of a dynamic representation of the temporal transcriptional regulatory program across the host, deciphering possible combinatorial interactions among factors under which they might be active. Although much remains to be explored, this study has computationally identified key transcription factors and proposed a putative time-dependent transcriptional regulatory program associated with critical transcriptional inflammatory responses. These results provide a solid foundation for future investigations to elucidate the underlying transcriptional regulatory mechanisms under the host inflammatory response. Also, the assumption that coexpressed genes that are functionally relevant are more likely to share some common transcriptional regulatory mechanism seems to be promising, making the proposed framework become essential in unravelling context-specific transcriptional regulatory interactions underlying diverse mammalian biological processes
    • …
    corecore